
Class 17, given on Feb 10, 2010, for Math 13, Winter 2010

1. Properties of conservative vector fields

Let’s quickly review the properties of conservative vector fields we’ve seen so far:
A vector field F is called a conservative vector field of F on a domain D if it is equal

to the gradient of some scalar function f on D; that is, F = ∇f for all points in D. A
conservative vector field satisfies the fundamental theorem of calculus for line integrals,
which says that if a path C, lying entirely in D, is parameterized by r(t), a ≤ t ≤ b, then∫

C
F · dr = f(r(b))− f(r(a)).

This is analogous to the usual FTC, and can be used to calculate line integrals of conser-
vative vector fields over complicated paths if one can calculate a potential function for that
field.

A consequence of the FTC for line integrals is that if F is conservative on D, then F is
path independent on D, which means that the value of a line integral of F along C only
depends on the start and end point of C, and not on the path in between. More precisely,
if two paths C1, C2 both lie entirely in D and start and end at the same point, then∫

C1

F · dr =
∫
C2

F · dr.

Remember that this might not happen for non-conservative vector fields! In the first exam-
ples we computed we gave a simple example of a non-conservative vector field whose line
integrals along two different paths were different, even though the paths had the same start
and end point.

A consequence of path independence is that the line integral of a conservative vector field
F along any closed path in D is always equal to 0. A closed path is a path whose starting
and end point are identical; ie, r(b) = r(a). To see why this is so, suppose C is a closed
path with some orientation. We can split this closed path into two separate paths C1, C2

by selecting any point, say r(c), (not equal to the start or end point) and splitting the path
in half at that point. Let C1 is the path with a ≤ t ≤ c, and C2 the path with c ≤ t ≤ b.
Although the starting point of C1 is the end point of C2, we can change this by reversing
the orientation on C2. Call this curve −C2 (it traces out the exact same curve as C2, but
has the opposite orientation of C2). Then C1,−C2 are two paths, lying entirely in D, which
start and end at the same point. Since F is conservative on D, we have∫

C1

F · dr =
∫
−C2

F · dr = −
∫
C2

F · dr,

where we use the fact that reversing the orientation of a path flips the sign of a line integral.
In particular, this tells us that∫

C1

F · dr +
∫
C2

F · dr =
∫
C

F · dr = 0.

As a matter of fact, all the arguments above could be reversed to show that if F is a vector
field for which

∫
C F · dr = 0 for every closed path C in some domain D, then F will be

path-independent in D.
In summary, the FTC tells us that a conservative vector field on D will also be path-

independent. Suppose that D is an open, connected set. Intuitively, a set is open if it does
not have any boundary points; more precisely, an open set is one in which for every point
x ∈ D, there is a disc containing x which also lies entirely in D. Sets with boundary points
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cannot satisfy this property since any disc containing a boundary point will also contain
points outside of D. A set D is connected if, given any two points in a connected set, there
exists a path contained entirely in D joining those two points. Intuitively, a connected set
consists only of ‘one piece’, and not more pieces.

Examples.

• The open disc x2 + y2 < 1 is open, because it has no boundary points, while the
(closed) disc x2 + y2 ≤ 1 is not open, since it has boundary points.
• Both the above sets are connected, but the set consisting of points which satisfy

either x2 + y2 ≤ 1 or x + y ≥ 10 is not connected since it consists of two separate
parts. If you pick one point in the disc portion of the set and another point in the
x + y ≥ 10 part of the set, there is no path which stays in the set which joins the
two points together.
• In general, the properties of being open and connected are not correlated in any

way with each other; that is, knowing that a set is open tells you nothing about
whether the set is connected and vice versa.

In practice, for most sets you see it will be easy to determine whether the set is open,
connected, or both. Suppose D is an open, connected set. Then it turns out that the prop-
erty of a vector field F being conservative on D is actually equivalent to path-independence
on D:

Theorem. Suppose D is an open connected set, and that F is path-independent on D.
Let (a, b) be any point in D. Then F is conservative on D, with potential function f(x, y)
defined by

f(x, y) =
∫
C

F · dr,

where C is any path contained in D which starts at (a, b) and ends at (x, y).

We will not prove this theorem, but notice that the connectedness property as well as the
path-independence property are both required in order for the definition of the potential
function f(x, y) to make any sense. The fact that D is open is used to check that ∇f = F;
see the textbook for more details.

We would like to be able to determine whether F is conservative without too much
difficulty. However, the path-independence property for conservative fields does not help
at all with this problem, since in practice it is impossible to check that an integral is
independent of path for EVERY choice of starting and end point and EVERY choice of
path connecting these two points. In one example we saw how we could try to calculate
‘partial integrals’ to either find a potential function, or rule out its existence. However, this
requires calculating integrals, which in general can be a fairly difficult problem.

In an earlier example, we showed that a field was not conservative by assuming that it was,
and then showing that this led to a contradiction. More specifically, suppose F = 〈P,Q〉
is conservative, so that F = ∇f , and make the additional assumption that F is C1; ie, P,
Q have continuous first-order partial derivatives. Then fx = P, fy = Q, and we can apply
Clairaut’s Theorem to conclude that fxy = Py = fyx = Qx. In other words, if F = 〈P,Q〉
is conservative and C1, then

∂P

∂y
=
∂Q

∂x
.
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Any conservative vector field satisfies the above property, which only involves taking deriva-
tives, not integrals. As such, this looks like it is a better test for whether a vector field is
conservative or not than anything else we know. However, there is one major problem: not
every field which passes this test is conservative! In other words, if Py 6= Qx for even one
point in D, then we know that F is not conservative on D, but even if Py = Qx everywhere
on D, we cannot necessarily conclude that F is conservative.

Example. (This is Problem #33 from Chapter 17.3, but the example is so classical that
it appears in many sources.) Let F(x, y) be defined by

F =
−yi + xj√
x2 + y2

.

This is almost exactly the vector field you sketched in a problem in the homework due
today, except with sign reversed. This vector field is defined on every point of R2 except
the origin. Its coordinate functions are defined by

P (x, y) =
−y√
x2 + y2

, Q(x, y) =
x√

x2 + y2
.

If we calculate Py, Qx, we find they are equal:

Py =
−

√
x2 + y2 + 2y2√

x2+y2

x2 + y2
=

y2 − x2

(x2 + y2)3/2
, Qx =

√
x2 + y2 − 2x2√

x2+y2

x2 + y2
=

y2 − x2

(x2 + y2)3/2
.

On the other hand, if we let C be the path given by r(t) = 〈cos t, sin t〉, 0 ≤ t ≤ 2π – namely,
the closed path given by the unit circle in the counterclockwise direction, then the integral
of F along C is equal to∫

C
F · dr =

∫ 2π

0
〈− sin θ, cos θ〉 · 〈− sin θ, cos θ〉 dt =

∫ 2π

0
dt = 2π 6= 0.

Therefore, there is no way this vector field is path-independent, and therefore no way this
vector field is conservative, on D, even though Py = Qx.

However, it turns out there is still a way to partially salvage this criterion for being a
conservative vector field. A closed curve C is called a simple closed curve if it does not
intersect itself anywhere; in terms of a parameterization r(t), a ≤ t ≤ b, this means that
r(t1) 6= r(t2) for any t1 6= t2 except at t1 = a, t2 = b or vice versa. A simple closed curve
splits up R2 into a region contained in the curve and a region outside the curve; both these
regions are connected. (Even though this seems obvious, proving that this is true is not
easy and was not done until the 19th century by Camille Jordan!)

A connected set D is called simply connected if, given any simple closed curve lying in
D, the interior of that curve only contains points in D. Another alternate definition is that
a set D is simply connected if, given any closed curve in D, it is possible to continuously
shrink the curve D to a point with out ever leaving the set D. In both these definitions,
the intuitive idea behind a simply connected set is that it is a set with no holes in it. We
have no tools for rigorously showing that a set is simply connected or not, but in practice
it is usually easy to ‘intuitively see’ if a set is simply connected. (If you want to learn how
to make your intuition precise, a good place to start is to take a topology class.)

Examples.
• The set x2 + y2 < 1 is simply connected; intuitively it has no holes.
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• The set D equal to R2 − (0, 0); ie, the plane with the origin removed, is not simply
connected, because of the hole at the origin. For example, the curve C we looked at
in the previous example is a simple closed curve lying entirely in D, but its interior
contains a point not in D.
• The annulus 1 ≤ x2 + y2 ≤ 4 is not simply connected. Any circle going around the

annulus will contain points which are not in the annulus itself.
In the example above where Py = Qx, yet F = 〈P,Q〉 was not a conservative vector field,

we saw that F was only defined on a set D which was not simply connected. It turns out
that if Py = Qx is true for all points D on an open, simply-connected region, then F is
conservative!

Theorem. Let F = 〈P,Q〉 be a C1 vector field on an open, simply-connected set D. If
Py = Qx for all points in D, then F is conservative.


